663 research outputs found

    A novel method to detect rare variants using both family and unrelated case-control data

    Get PDF
    To detect rare variants associated with a phenotype, we develop a novel statistical method that can use both family and unrelated case-control data. Unlike the currently existing methods, we first use family data to calculate weights to be given to rare variants, differentiating between concordantly affected and discordant sib pairs. These weights are then used in an association test applied to the unrelated case-control data. We applied the proposed method to the simulated sequencing data in Genetic Analysis Workshop 17 and identified two genes associated with the disease

    SNPs and Other Features as They Predispose to Complex Disease: Genome-Wide Predictive Analysis of a Quantitative Phenotype for Hypertension

    Get PDF
    Though recently they have fallen into some disrepute, genome-wide association studies (GWAS) have been formulated and applied to understanding essential hypertension. The principal goal here is to use data gathered in a GWAS to gauge the extent to which SNPs and their interactions with other features can be combined to predict mean arterial blood pressure (MAP) in 3138 pre-menopausal and naturally post-menopausal white women. More precisely, we quantify the extent to which data as described permit prediction of MAP beyond what is possible from traditional risk factors such as blood cholesterol levels and glucose levels. Of course, these traditional risk factors are genetic, though typically not explicitly so. In all, there were 44 such risk factors/clinical variables measured and 377,790 single nucleotide polymorphisms (SNPs) genotyped. Data for women we studied are from first visit measurements taken as part of the Atherosclerotic Risk in Communities (ARIC) study. We begin by assessing non-SNP features in their abilities to predict MAP, employing a novel regression technique with two stages, first the discovery of main effects and next discovery of their interactions. The long list of SNPs genotyped is reduced to a manageable list for combining with non-SNP features in prediction. We adapted Efron's local false discovery rate to produce this reduced list. Selected non-SNP and SNP features and their interactions are used to predict MAP using adaptive linear regression. We quantify quality of prediction by an estimated coefficient of determination (R2). We compare the accuracy of prediction with and without information from SNPs

    Single nucleotide polymorphisms and breast cancer: not yet a success story

    Get PDF
    Numerous studies have examined low penetrance susceptibility polymorphisms in candidate genes, with some reporting significant findings. However, for the most part these associations could not be replicated in subsequent studies, suggesting that the original observations were due to chance. The failure to identify meaningful common genetic variation in relation to breast cancer should give us pause for thought and make us reconsider our current research strategies. The most recent directions of pooling samples to increase statistical power and pursuing whole genome screens may overcome some obstacles while also creating new challenges. Future studies should perhaps also consider alternative designs such as using surrogate (preferably continuous) markers of breast cancer, focusing on high-risk populations, and defining pathologically distinct outcomes

    Single nucleotide polymorphisms and breast cancer: not yet a success story

    Get PDF
    Numerous studies have examined low penetrance susceptibility polymorphisms in candidate genes, with some reporting significant findings. However, for the most part these associations could not be replicated in subsequent studies, suggesting that the original observations were due to chance. The failure to identify meaningful common genetic variation in relation to breast cancer should give us pause for thought and make us reconsider our current research strategies. The most recent directions of pooling samples to increase statistical power and pursuing whole genome screens may overcome some obstacles while also creating new challenges. Future studies should perhaps also consider alternative designs such as using surrogate (preferably continuous) markers of breast cancer, focusing on high-risk populations, and defining pathologically distinct outcomes

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Discerning the ancestry of European Americans in genetic association studies

    Get PDF
    European Americans are often treated as a homogeneous group, but in fact form a structured population due to historical immigration of diverse source populations. Discerning the ancestry of European Americans genotyped in association studies is important in order to prevent false-positive or false-negative associations due to population stratification and to identify genetic variants whose contribution to disease risk differs across European ancestries. Here, we investigate empirical patterns of population structure in European Americans, analyzing 4,198 samples from four genome-wide association studies to show that components roughly corresponding to northwest European, southeast European, and Ashkenazi Jewish ancestry are the main sources of European American population structure. Building on this insight, we constructed a panel of 300 validated markers that are highly informative for distinguishing these ancestries. We demonstrate that this panel of markers can be used to correct for stratification in association studies that do not generate dense genotype data

    Two-dimensional enrichment analysis for mining high-level imaging genetic associations

    Get PDF
    Enrichment analysis has been widely applied in the genome-wide association studies (GWAS), where gene sets corresponding to biological pathways are examined for significant associations with a phenotype to help increase statistical power and improve biological interpretation. In this work, we expand the scope of enrichment analysis into brain imaging genetics, an emerging field that studies how genetic variation influences brain structure and function measured by neuroimaging quantitative traits (QT). Given the high dimensionality of both imaging and genetic data, we propose to study Imaging Genetic Enrichment Analysis (IGEA), a new enrichment analysis paradigm that jointly considers meaningful gene sets (GS) and brain circuits (BC) and examines whether any given GS-BC pair is enriched in a list of gene-QT findings. Using gene expression data from Allen Human Brain Atlas and imaging genetics data from Alzheimer's Disease Neuroimaging Initiative as test beds, we present an IGEA framework and conduct a proof-of-concept study. This empirical study identifies 12 significant high level two dimensional imaging genetics modules. Many of these modules are relevant to a variety of neurobiological pathways or neurodegenerative diseases, showing the promise of the proposal framework for providing insight into the mechanism of complex diseases

    Effectiveness of strategies to increase the validity of findings from association studies: size vs. replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The capacity of multiple comparisons to produce false positive findings in genetic association studies is abundantly clear. To address this issue, the concept of false positive report probability (FPRP) measures "the probability of no true association between a genetic variant and disease given a statistically significant finding". This concept involves the notion of prior probability of an association between a genetic variant and a disease, making it difficult to achieve acceptable levels for the FPRP when the prior probability is low. Increasing the sample size is of limited efficiency to improve the situation.</p> <p>Methods</p> <p>To further clarify this problem, the concept of true report probability (TRP) is introduced by analogy to the positive predictive value (PPV) of diagnostic testing. The approach is extended to consider the effects of replication studies. The formula for the TRP after k replication studies is mathematically derived and shown to be only dependent on prior probability, alpha, power, and number of replication studies.</p> <p>Results</p> <p>Case-control association studies are used to illustrate the TRP concept for replication strategies. Based on power considerations, a relationship is derived between TRP after k replication studies and sample size of each individual study. That relationship enables study designers optimization of study plans. Further, it is demonstrated that replication is efficient in increasing the TRP even in the case of low prior probability of an association and without requiring very large sample sizes for each individual study.</p> <p>Conclusions</p> <p>True report probability is a comprehensive and straightforward concept for assessing the validity of positive statistical testing results in association studies. By its extension to replication strategies it can be demonstrated in a transparent manner that replication is highly effective in distinguishing spurious from true associations. Based on the generalized TRP method for replication designs, optimal research strategy and sample size planning become possible.</p

    Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data

    Get PDF
    We evaluate four association tests for rare variants—the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method—by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all four methods can control FWER well. All four methods have comparable power, which is low for the analysis of the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast permutation procedure into these three methods. The results show that using the fast permutation procedure can produce FWERs and average powers close to the values obtained from the standard permutation procedure on the GAW17 data sets. The standard permutation procedure is computationally intensive
    corecore